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This paper presents direct numerical simulations of the stretch-twist$dlf) dynamo. For more than two
decades, this dynamo has been viewed as the prototype of the fast dynamo process; and because of its
apparently conceptual simplicity, it was generally not thought to be necessary to investigate its quantitative
properties in detail via numerical simulations. Furthermore, it has been generally assumed that the STF
dynamo is not characterized by small-scale fluctuations, as is usually the case for many other dynamo pro-
cesses. Numerical simulations show, however, that the STF dynamo process is accompanied by the generation
of small-scale fluctuations in the magnetic field. Therefore, it cannot be takenaagrami given that the STF
dynamo is a large-scale dynamo; however, our results suggest that the STF dynamo does generate large-scale
magnetic fields. In any eventuality, the magnetic fields generated by the STF process do not behave as was
previously expected: As we show, these fields become chaotic, first, in the sense that magnetic field lines
acquire multifractal properties; and, second, because the field itself becomes ¢hagttbe (intermittency
fractal dimensions are no longer trivjal S1063-651X96)08905-2

PACS numbgs): 05.45+b, 52.30-—q, 47.52+j, 47.53+n

[. INTRODUCTION namo action; for example, if8] it is assumed that this ratio
scales as the magnetic Reynolds numRgrto some power
Since the stretch-twist-fold(STH magnetic dynamo [9],
model was introduced by Vainshtein and Zel'dovidj, it
. 2
has become a paradigm for the “fast dynamo” proce&s (B ~R" )
Conceptually extremely simple, the STF process has ap- <_B§_ m
peared to be so intuitively obvious in its functioning that
essentially no efforts have been made to study its detailetf the exponent is not very small, then this model suggests
behavior via numerical simulationéThus, although, strictly that the generation of the large-scale magnetic field compo-
speaking, the STF process is inherently three dimensional, itent might be strongly inhibited for the following reasons:
has not been difficulties in solving the equations numericallyfirst, the magnetic energy cannot substantially exceed the
that has prevented further progress. Indeed, in the high corkinetic one; second, the total magnetic energy largely resides
ductivity limit, when diffusion may be neglected, the kine- in the fluctuations. As a consequence, there might exist seri-
matic dynamo problem is exactly solvable via the Cauchyous restrictions on astrophysical nonlinear magnetic dyna-
solution; see e.g[2,3]). In this paper, we provide numerical mos, the astrophysical problem being that such dynamos are
simulations of the STF process, with the quite unexpectedo generate large scale fields, instead of fluctuations on dif-
result that the conceptual simplicity of the mechanism turndusive scales.
out to disguise a remarkable complexity of the actual solu- Now, simple considerations suggest that the exponésit
tions. of order of unity: For the two-dimensional cases=1 [5],
One of the goals of this paper is to study the origins ofand might be evere1 for three dimensiong8]; this conjec-

this complexity, which appears to be intimately connectedure is supported by various calculations, including numeri-
with the generation of small-scale magnetic fluctuatitefs  cal simulationd10]. Hence the concern regarding the exist-
[4-7] and the review iff1]). This growth of fluctuations is ence of astrophysically interesting magnetic dynamos is
associated with spatial scale reduction of the ambient magiardly settled.
netic fields during the course of magnetic field amplification, Unfortunately, there are few universally agreed upon re-
down to the diffusive spatial scales. In classical dynamcsults in this subject area. It is suspected that scale reduction
theory, this process of scale reducti@ concept borrowed to the diffusive scales, and the associated fluctuation growth,
from turbulence theobyis essential to magnetic field ampli- is typical behavior; however, one cannot prove that this typi-
fication: only when such scale reduction down to the diffu-cal behavior is in fact universal. Consider the conceptually
sive scales occurs does the magnetic dynéongroduction  simplest case, namely the kinematic regime, for which one
of additional magnetic field lingsfunction [4—7]. In this  can formulate an eigenvalue problem for the special case of a
model, the energy of magnetic field®%8, is concentrated steady velocity. If we assume an absence of scale reduction
on very small diffusive scales during the field amplification (and in the presence of magnetic field growtthen one
process; these small-scale fields may be called “fluctuawould expect that, in this simplified case, the scale of the
tions,” as opposed to the large-scale compon@gt This  unstable eigenfunctions is comparable to that of the velocity
means that the ratitB?)/(B 3) can become large during dy- field. However, as shown by Moffatt and Proctfit1],
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smooth eigenfunctions do not exist Bg—<. This suggests u Vp 1 )
that, for finiteRy,, the eigenfunctions are instead character- -+ (u-V)u=——=+7— [VXB]XB+»V2u+F,
ized by the diffusive scalé=I/R%/? (I is the characteristic p P @)

scale of the velocity field and thaté—0 asR,,—« [11].

This in turn suggests that the initially “smooth(i.e., large-  whereF are external forces stirring the conductive medium.
scalg field adjusts to the eigenfunction with largest growth  The viscosityr and diffusivity 7 are small for most astro-
rate, i.e., decreases its spatial scale until it reaches the diffyshysically interesting casdse., we have both the Reynolds
sive size scale. numberR>1, and the magnetic Reynolds numbey>1).
These issues, which have been addressed for some time s circumstance makes it very difficult, if not impossible,
dynamo literature, were not in fact discussed in the contex{o solve Eqs(2) and(3) in the fully general case. Even in the
of the STF process; indeed, it has been conjectured that thgnematic regimgwhen back reactions of magnetic fields on
exponenin in (1) is small, or even zero, for the STF mecha- the motion are ignoredfor which the velocity field is con-
nism[3], e.g., that there is growth of magnetic flux on largesidered to be given, there is no general solution (2
scales, but not on the small spatial scales of fluctuationgnown. This situation is aggravated by the fact that the
This circumstance gave rise to the hope that the STF procesgagnetic-field energy grows mostly on diffusive scales, so
might resolve the perceived difficulties with astrophysicalthat the Lorentz back reaction is already present when the
dynamos; see, e.d3,12-14. This hope is countered by the |arge-scale magnetic-field componemthich we are inter-
objection that the Moffatt-Proctor theorem on eigenfunctiongsted in from the astrophysical point of vigig really very
singularity for the limitR,— does not apply here because weak[10]. In other words, the nonlinear nonkinematic re-
the motion associated with the STF processdssteady. As g|me comes into p|ay very ear|y on in the genera’[ion of
we will show by direct numerical simulation, the STF pro- magnetic fields, and therefore the kinematic approach be-
cess does lead to small-scale fluctuations in the magnetigomes invalid. Below, we will follow the “post-kinematic”
field; we therefore might speculate that because the STF mepproach suggested by Childress and Gilp&}t which fo-
tion is periodic(a circumstance which leads to Floquet-type cuses primary attention on the role of magnetic fluctuations
eigenfunctions a properly modified version of the Moffatt- in modifying the fluid flow, and their impact on the dynamo.
Proctor theorem might nevertheless apply. The first issue we address is whether fluctuations can ap-
In this paper, we shall revisit the STF process, and usingear in the STF model. If magnetic field amplification during
both analytical and numerical tools, will address three quesSthe STF process isot accompanied by scale reduction in the
tions. magnetic fieldi.e., not accompanied by generation of strong
(i) Is there a large-scale dynamo associated with the STmagnetic fluctuations then we obtain the results expected
process; in particular, is there generation of large-scale magor the past 20 years, i.e., a large-scale dynamo. If, however,
netic flux via the STF process? magnetic fluctuations do appear, then there still remains the
(i) Do fluctuations appear in the course of STF action? question of whether large-scale magnetic fields are gener-
(iii) If the answer to the second point is positive, then isated. If fluctuationsire present, then the question is whether
there also a small-scale dynamo process acting during th@e amplification of magnetic fields due to line stretching is
STF?(A small-scale dynamo is a process in which the scalgnore effective than the scale reductigoint (i ) of Sec. I.
reduction is accompanied by magnetic field amplification, In order to address these issues, we will solve m
such that the scale-reduction process is less efficient than thgimerically, for the ideal casg=0 (R,,—x). We first note
magnetic field amplificatiofl].) that there is an exact solution to this equation, namely the

. . ~ Cauchy solution
The paper is thus organized as follows. After formulating

the basics in Sec. Il, we describe the STF process that gives o i

rise to fast dynamo actiofBec. ). The results of the simu- Bi(x,t)= BJ( T2 (4a)
lations are described in Secs. IV and V; Sec. IV is devoted to )

a discussion of the numerical methods used by us to follow 0)_

the evolution of magnetic field linesvhich might be easily B™=B(a(x.1).0), (4b)
|m°d'f'6dh.}° t:;olve a vlarletylof othe%-rhflwd-dynam?slgro%- where a(x,t) is the initial (t=0) position of a Lagrangian
ems), while the spatial correlation of the magnetic field wi trajectory that arrives at point at timet. A conceptually

be e_ga'gi_”eg in %ﬁc' V. Qur summary and conclusions Aimple approach to obtain the solution is to rewrite @y.in
provided in Sec. Vi. terms of the Lundquist solutiofsee e.g.[15,12)

II. FORMULATION OF THE PROBLEM B(x,t) _ ds
B(a) ds(t=0)’

5
We are looking for(exponentially growing solutions of

the induction equation whereds is an infinitesimal vector connecting two neighbor-

ing liquid particles. The procedure for computing the mag-
ﬁsz[ux B]+ V2B, ) netic field evolution in time is straightforward: Suppose we
at are given a flow(x=u,, y=u,, andz=u,), and suppose
further that we will examine the evolution of a given mag-
where the velocity fields is defined by the equation of mo- netic field line, whose location is specified at titze0. If we
tion discretize the field line, i.e., approximate the field line by a
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finite number of short straight line segmeits joining se- We end up with a loop in th&' Z plane, centered at some
guential points on the magnetic field line, then the evolutionpositive value ofy (andx=z=0). We have to shift it back,
of the field line is defined by the motion of these line seg-so that the center is =0, and turn it about thg-axis[17].

ments. As a final aside regarding this STF flow, we note that
Specifically, consider théth line segment: its ends are there are 11 distinct parameters which define this flayy:
defined at any given time by a,, az, au, 'y, M4, Ry, Ry, Rg, Ry, andc.
ds={xi(a,t),Xi+1(a+1,0)}, IV. NUMERICAL SIMULATIONS
wherea, and a; are the initial(t=0) position of thetth In this section, we discuss the results obtained by solving
infinitesimal line segment. With the use of actual flow ex- EQs.(5) numerically, based on the use of the STF flt&y
pressions (9). These simulations suggest that the simple picture of the
STF dynamo applies only to a set of field lines of measure
(X=Uy,y=U,,2=Uy,), zero, i.e., that virtually all field lines subjected to the STF

flow experience transformations that lead to field line chaos.

one can now solve for the Lundquist solutitB) by appro- An essential question is whether this result hinges on an

priate simple substitution for the velocity flow. “appropriate” choice for the flow parameters which enter
into the definition of the analytical STF flow6)—(9), i.e.,

whether—with a more judicious choice of these

parameters—one in fact could recover the simple picture for
We use an analytical form of the STF, suggested by Mofthe STF dynamo process for almost all field lines. As we will

fatt and Proctof11]. The velocity is presented as a combi- see(in Sec. IV B), this question can be answered in the nega-

nation of polynomials of lowest possible orders. In order totive for continuous motion.

make sure that the motion is bounded at infinity, the vector

Ill. STF VELOCITY FIELD

potential of this velocity is multiplied by the exponential A. Mapping of magnetic field lines
term exg—x?/R?}; this insures that the velocity goes to zero . .
at infinitgl } Y9 In Sec. lll, we described the technique used by us to

implement the STF flow numerically, namely by using the
Lundquist solution(5); in this subsection, we provide some

_ L 2R2 2792 2 illustrative examples of the effects of this flow on field line
S w=ae” i (x—2xZ2/RLy — 2y 2Ry, geometry as these magnetic field lines are deformed by the
_ 2442 2 flow (6)—(9).

22+2(x"+y)2IRY). © The illustrations we focus on all start with the topologi-
cally simplest magnetic field geometry, namely circular
0chosed field lines placed at various locations with respect to

plane, andbecause of the assumed damping exponent, the origin. Two distinct sets of calculations will be displayed
requirement that the motion is boundéelads to the opposite LI . X '
qul ‘on | und bPOs| The first sefcaseA] consists of 6465 concentric coplanar

process on the periphery, namely compression of field lines.. les( ing in radius f 0to 1, where th
Therefore, we have to restrict ourselves to regions not fafirelesiranging in radiusp from © 1o 5, where the common
plane is specified parametrically fg=h, h=cons}, and

fromef(t,?/\./e make a figure “eight” from the loop, compress- where we shall Iez=h lie in the value range-0.5<h=<0.5
ing it along they axis[16], (or —0.5/m<h=<0.5/7); this gives 65 distinct values d1
The second set of calculatiofsaseB] focuses on a single

7. u2=aze’xz’Rg’(yz*zz)”g(O,—y+2y22/r§, g]neltlro;tllzli):]g;c:u:)a:)ragig?na)rﬂeld line, whose center lies in
2—22y2Ir2) @) The .difference bgtween these two sets of calcu_lations is

2 largely in the resolution of the numerical soluti@g., in the
number of points taken on any given initial closed field Jine
and whence in the duration for which the Lundquist solution
can be followed sensibly without significant loss of geomet-

The first step, “stretch,” is described by

This velocity stretches all field lines not far from tkze=0

The next step is to twist about theaxis, described by

N 22
T, uz=age *'Ra(0,w(x)z—x2(y?+2%)/R;, ric information[18]. In particular, the first set of calculations
_ 24 2\/p2 entails taking 64 points per initial field linge., an interpoint
w(X)y+xy(y*+Z9)/R3), (8a distance ofr/64), while the second set of calculations entails
taking 64 points per initial field ling(i.e., an interpoint dis-
w(X)=X. (8 tance ofm/64%). Thus we can follow the field line distortion

o for far longer durations in the second case than in the first. In
Now the loop should lie in th&Z plane, and we want to particular, the average distance between adjacent points on a
fold it in the y direction. This can be accomplished by the given field line for cas@ becomes comparable to unity after

motion only two STF cycles; hence, only a single STF cycle can be
R 22 o o sensibly followed in this set of calculations. However, as we
F: ug=ase Y R (20— x4 2(xy?+ cx®y)/R2, show immediately below, this is sufficient to demonstrate

) ) ) (both qualitatively and quantitativelythe sensitivity of the
y+3cx°—2(x?y+cx*)/r3,0). (9 geometric field line distortions on the precise initial location
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(b)

FIG. 1. Evolution of a bundle
(c)

o o (@) of magnetic field lines after one
STF cycle(caseA). Initial lines
o e ot e (left-hand panels are placed in
. o T T o . T ad the vicinity of thez=0 plane, with
’ /,.-/'_ < /_.,/" " /,,/" S i radiusr=0.51(a), r=0.2 (c), and
5

r=0.9 (e). The corresponding fi-

- — - - : g :
nal field line bundles are shown in
~* -~ (b), (d), and(f), respectively. The
oy 2T . = parameters for the STF are
. = . = a;=1.3, a,=3.0, a3=3.30,
B G o pr . o a,=1.0,r,=1.0,r,=0.7,R;=1.0,
- s - el R,=0.3, R;=0.71, R,=1.4, and
c=1.9.
of a given “test field line.” In caseB, our resolution crite- Magnetic flux tubes which lie only slightly out of the

rion allows us to compute the geometric distortion of theplanez=0 behave completely differently. In Fig. 2 we show
single field line for up to six STF cycles; again, we will the evolution of three additional cases, now for fixed
shortly show that even though we now follow only a single (=0.51), but varying initial plane. It is evident that in no case
field line, the computation suffices to apply quantitativedo we obtain a geometric result after one flow cycle which
analyses to the resulting complex geometric object. In parresembles the canonical STF picture of field line distortion.
ticular, the Hausdorff dimension of the line is shown to be In order to illustrate that repeated application of the STF
greater than 1. flow enormously complicates the resulting field line geom-
We begin our illustrations with cask: Fig. 1 depicts the etry, we have followed the time history of a single field line
evolution of three bundle®r tubeg of magnetic field lines (caseB) as well; as already alluded to, the focus on a single
lying in the planez=0 as a result of one STF cycle; the field line affords additional computational power, from
figure shows selected lines, whose radii lie in the vicinity ofwhich comes the ability to follow the field line evolution
p~0.51 (upper pangl p~0.2 (middle panel, and p~0.9  further in time.
(lower panel. While the flux tube withp~0.51 seems to To make our point, let us consider the temporal evolution
deform roughly as expected from the STF transformationpf those field lines that most closely conform to expectation
this is not the case for the other two flux tubes: the field linesafter one STF cycle, i.e., they are “properly behaved.” As
with initially smaller radii are simply compressddee the shown in Figs. 3 and 4, although these field lines are rela-
explanation below in Sec. IV )Bwhile the initial field lines tively rare, they do exist. We suspect that it is tmmtinuous
with initially larger radii are highly distorted in an apparently nature of the STF transformatidi6)—(9) that leads to this
random manner. situation.
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(b)

FIG. 2. Same as Fig. 1, but
with fixed initial flux tube radius
(p~0.5) and varying initial
plane:z=-0.01(a), 0.01(c), and
0.1 (e); the final flux tube configu-

,0" /p-’ . .
_ - ration after a single STF transfor-
o = »* = mation is shown in(b), (d), and
- - 1
o — P o = (f), respectively.
(£)
ot (e) o

However, Fig. 3 also shows that the actual geometricalind p) or of the 11 parameters characterizing the STF flow;
distortion of such a “properly behaved” field line after the or whether these results are really a generic description for
initial STF cycle is not perfect; that is, there are small dis-this type of flow. In other words, could a more judicious
crepancies between the actual distorted field line and thehoice of control parameter space avoid these difficulties?
“ideal” STF, processed field lingcf. Figs. 1b) and 3b)].  We have in fact explored the full parameter space to some
The key point that Fig. 3 demonstrates is that it is these smallxtent (for obvious reasons, a high-resolution study of this
discrepancies that lead to ultimate field line chaos even fof 1 _gimensional space could not be carried)olt no case
these “well-behaved” field lines. o . did we find a preponderance of “well-behaved” field lines

A second caséz=0.1 att=0) is shown in Fig. 4. ItiS  ater one STF cycle; generally, only a small fractiaf the

evident that even after a single STF cycle, the field line de jor of a few perceitof the initial field lines behaves

formation is already geometrically complex; as time pro'“properly.”

ceeds, complexity grows yet greater_—there IS SOME TeSeM” +, he more specific, let us consider the actual sequence of

blance to the Lyapunov exponential separation of tWotransformations embodied in the STF. We find that virtuall

neighboring particles in a chaotic floWe will pursue this S ) y

aspect further quantitatively in Sec. IV)B. any comblnatlon of. control parameters Iead_s toa su‘f:cessful
stretchS operation(i.e., essentially all field lines are “well

behaved” after thes operation. However, this is not true for

the next twist operation. Consider the transformafigiiEq.

An obvious and very important question following from (7)]: One obtains “figure eight” loops only for field lines
the results just obtained is whether these results are just amhose initial radiugp is, roughly speaking, greater th&y;
unfortunate consequence of a particular choice of the parantield lines whose initial radius is comparable to, or smaller
eters defining the initial field line configuratidie., z=h  than,R, would be simply compressed to tleaxis, see Fig.

B. Parameter sensitivity
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1(d). The next step, “twisting” of the field linegT,) is even ficient time to finish the 180° twisting, while larger loops
more complicated, because the “angular velocity’'is a  would be overtwisted, i.e., twist more than 180°.

function ofx. Thus, for any given time allotted for this stage, = Thus we are left with only few percent of the field lines
only “selected” loops halves would turn sufficiently so that that behave “properly.” We found that very careful param-
the entire loop is twisted 180°; loops of smaller size, andeter tuning is required to do the next step, foldiRg for
therefore, with smaller angular velocity, would not have suf-these few “selected” field lines, otherwise they are distorted

FIG. 3. Evolution of a single
field line (caseB), lying in the
planez=0. Time is measured in
terms of the number of STF
cycles. (@) Initial line (t=0). (b)
t=1.(c)t=2.(d) t=3.(e) t=4.(f)
t=5. (g) t=6.
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and deformed in unpredictable way. This suggests that if aesult from repeated STF transformations therefore reduces
special choice of control parameters exists that yields a frado the trivial case just discussed.
tion of “well-behaved” field lines, then it must occupy a Now consider how field lines actually behave when sub-
small fraction of the phase space volume. Finally, as menjected to the STF transformation. First, let us look at the
tioned in Sec. IV A, even selected field lines do not formbehavior of the dimensio® [i.e., at the casg=1 in Eq.
perfect double circles. (10): Figures %b) and 3d) give an evaluation oD for cases
Thus we arrive at two conclusions. First, the analyticalwe have computed, and we firal>1; therefore we do not
representation of the STF transformation accomplishes thebtain the trivial case. Next, let us ask for the nature of the
geometric field line distortions traditionally associated with magnetic surfaces generated during the STF process, which
the stretch-twist-fold dynamo only for a few “selected” field may be quantitatively described by their dimension: Accord-
lines; essentially all other field lines are transformed in aning to the intersection theorem, the dimension of a magnetic
apparently chaotic manner. Second, even these “selectedSurface is given byp?=D+1 (the Hausdorff dimension
field lines, which behave “well”(or as well as could he D™ of the set covered by a magnetic surface therefore co-
after one STF cycle, behave “badly(i.e., do not conformto incides with D® [19]). We find that (in both cases

the traditional STF pictupefor subsequent STF cycles. DM =26, whereas the dimension naively expected from the
STF process would be 2.
C. Fractal dimensions of stretched magnetic field lines Another way of looking at this result is to consider the

The initial geometry of the field lines we have studied hasdImenSIon spectruD q: Figures §3) and §c) illustrate scal-

been kept simple, and thus smooth. The question we no|ng for the evolution of a field line which initially lies in the

; ! ) ‘ﬁflanesz= h=0 andz=h=0.1, respectively, for a range of
address is whether successive STF transformations lead 0 jues ofg. We observe good scaling behavior for about four
geometrically more “complex” field line object. :

To beain with te that f finit ber of decades in both cases; the field lines clearly do not behave in
0 begin with, we note that for any inite NUMDET O SUC- v, o wyriyia” manner described above. Indeed, evaluation of
cessive STF cycles, a given field line must remain smoot

e.g., its topological dimension remains equal to 1. Thus alﬂlthe dimension spectrur, for both casegFigs. §c) and

N¥(d)] shows strong departure from the “trivial” behavior
departures from smoothness in this sense can only be (] g dep ,

) ) demonstrating a significant departure from unity [
garded in an asymptotic sense, as the number of success%q) g g b y By (@

A in both instances. Remarkably, the two dimension spec-
STF cycles goes to infinity. Nevertheless, we are able to as, ) y P

heth iqhbori int X field i hibit | a are essentially identical if account is taken of the error
whether neighboring points on a given Tield in€ exnibit SCalky, j . e highest-order dimensions we have calculated sub-
ing as the number of successive STF cycles incredsgss

till finite): h ¢ lina behavi il b stantially deviate from unityD ,=0.75); there is no evidence
stll inite), such emergence ol scaling benhavior will D€ 1€~y o) asymptotic value has been reactied, D,>D, for

gﬁrded Iby us;l asl ewdenc;‘e IIOf tEe ﬁp&ear;nce of f|3|df_ I|n§>4)_ This suggests that the magnetic field becomes stochas-
chaos. In particular, we shall ask whether the curve definegl. ,< ihe STF process proceeds.

by a stretched field line has fractal length, and whether this

h id f multifractal struct | der t The existence of scaling in this field line stretching pro-
curve snows evidence ol mulliiractal structure. in order 10,q ¢ suggests the following physical scenario: As ugfal
attack this problem, we shall use the expres$i8i

[1]), the stretching and shearing of magnetic fields is accom-
AA\G 1\ <a+(1-Dg)(a-1) panied by scale reduction. Once the characteristic scale of
<(—) >~(—) , (10)  the field is smaller than that of the motion, the stretching
As As becomes effectively self-similatbecause the large scale
structure of the motion is no longer relevarthe fact that
whereAA is the distance between two poir(tshose initial  we see multifractal behavide.g., the fact that the general-
separation is given bys), and the fractalor generalizell  ized dimensions fog>1 depart significantly from unity
dimensions are denoted By, . Note that by setting=1, we  suggests that the field line stretching is not homogeneous,
recover the classical definition of the fractal length dimen-.e,, that the Lyapunov exponent is different in different
sion; thus, if(AA/As) shows scaling propertiess can be  places.
found. The Richardson-Mandelbrot dimensi@n is then
given by D. Details of magnetic field structure

To get a better idea of what the magnetic field looks like
D=1+« (1D as it evolves subject to the STF flow, we show all three
components of its components in tk¥ plane afteoneSTF
[The scaling of((AA/As)Y), if any, can be measured for cycle(i.e., caseA; Fig. 6). Several important results emerge
arbitraryq.] For a regularsmootl) curve, k=0 andD =1, immediately. First, according to the “standard” STF pro-
therefore[using Eq.(11)] D=1, and the exponent ifl0) is  cess, the verticalR,) field component should remain zero;
zero—this is the trivial case. If the STF transformation however, it clearly does not vanish, and instead shows fairly
would function as was expectéd.g.,[1]), then the field line  complex geometric structurdgFig. 6(b)]. Similarly, the ex-
length would double after each cycle, so that after six cyclepectations for thé8, and B, components is that they essen-
the field line length would grow to®2=64 times its original tially retain the same geometric structure as they hae-at
length. Each subsegment of this curve would grow in exacthin contrast, Figures (6)—6(f) show that while the average
the same way, so that((AA/As)%=64% hence geometric structure is indeed retained, the detailed spatial
((AA/As)%) would not scale with\s, and therefore the ex- behavior of these two field components is much more com-
ponent in Eq.(10) is zero: Theexpected(perhaps naive plex: There are “unwanted” enclaves of opposite polarities
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@ (b)

FIG. 4. Same as Fig. 4, but the
initial line lies in the plane=0.1.

everywhere(where “opposite” means opposite to previous lations(for which we obtain the magnetic field portrait after
expectations and the neutral linéwhich corresponds to the six STF cycle§ all evidence of the original geometric field
curve separating opposite polarifieis geometrically very structure is lost: Figure 7 presents all three components of
complicated. If one looks at the results of the cBsealcu-  the field(as in Fig. 6 for an initial field line lying in thez=0
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plane; it is evident that the field is extremely complicated,
and does not retain any of the geometric simplicity—even in
the mean—expected from the STF process.

V. CORRELATION PROPERTIES OF THE FIELD:
IS THERE A DYNAMO?

The next step is to examine the detailed correlation prop-
erties of the stretched magnetic field: The standard STF pro-
cess is thought to lead to amplification of the large-scale field
components only, with essentially no fluctuations. Is this in
fact correct for the STF process we are studying here? From
Sec. IV, we have seen that the ans\adrleast on the quali-
tative leve) is no: Fluctuations are seen to grow rapidly in
our calculations, so that the correlation length ought to de-
crease dramatically. In order to study this process quantita-
tively, we will investigate the correlation properties of a
single field line for two case&.g., when the initial field line
is atz=0 and atz=0.1). As an aside, we note that several
aspects of the correlation function have a direct physical in-
terpretation: First, the zero-lag correlation function is just the
average magnetic energB?); second, the correlation length
is a measure of the typical magnetic field line scale; third, the
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FIG. 5. Multifractal dimensions of magnetic field line length).
Scaling for an initial field line lying in the=h=0 plane.(b) Cor-
responding dimension spectrudy . Paneldc) and(d) are the same

FIG. 6. Mapping of the magnetic field into th€Y plane, fol-
lowing one STF cycle; the lightdark) greyscale corresponds to
negative(positive values.(a) Initial field lines are shown as con-
centric circles, with radii from O to 1, lying in 65 planes between
z=-0.5 andz=0.5. (b) Projection of theB, component into th&Y
plane.(c) Projection of the initialB, component(d) Projection of
B, after one STF cyclete) Projection of the initiaB, component.
(f) Projection ofB, after one STF cycle. A comparison of the initial
(t=0) projections with the=1 projections shows that, contrary to
naive expectations, the relatively simple geometry of the initial state
is not preserved when the STF transformation is applied.

long-range portion of the correlation function is directly rel-
evant to the study of the large-scale magnetic dynamo.

A. Intermittency fractals

We first ask if the fluctuations are chaotic. We calculate
correlations of magnitudes, and make use of a formula link-
ing them to fractal dimensionsee[20]),

([B(x+1)2B(x)%]%% ~ r(3—Dg,>2)(q/2—1)2—(3—Dg>)<q—1);
(12

here the generalized dimensioﬁéj) are based on the mea-
sure
fci| B|dx
mC)= Jv|Bldx’
where the total volumé/ is divided exhaustively into dis-

joint subsetsC;. Physically, these dimensions test for the
presence of intermittency. Figure 8 presents scaling proper-

as (a) and (b), respectively, but the initial field line lies in the ties for the quantity on the left-hand side(@®). The scaling
z=h=0.1 plane. For comparison, we have superimposed generalFigs. 8@ and(c)] does not have as large a range of spatial

ized dimensions for the=0 cas€from (b)] on (d) [using the same

scales as the length-of-line scaling shown in Fige 5., only

symbol as in(b)]; we observe that the two dimension spectra aretwo and a half decadgsbut the error bars are substantially

almost identical.

smaller than for this previous case. Our results clearly show
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® first cycle. Summarizing: we see that we obtain multifractal
structure both in the length of magnetic line lingsg. 5
and in the field intermittencyFig. 8).

We have already seen in Sec. IV that the evolved mag-
netic field lines are chaotic. It is well known that the equa-
tions defining a field line are equivalent to those describing a
trajectory of a dynamical system, and calculations of such
trajectories have shown that they become cha@iz;23.
These calculations typically show that the Lyapunov expo-
nent is positive, and therefore trajectories are chaotic for
these flowg22,23. In addition, we have just shown above
that the magnetic field is itself chaotic: this would not nec-
essarily be the case for chaotic trajectories. Indeed, Lagrang-
ian chaos may appear in the case of a regular Eulerian field.
Another difference from the previous calculations is that we
see atransition to chaos That is, both field lines and the
magnetic field are regular at the beginnifig-0), but after
(only) six STF cycles both become chaotic. Our case is quite
similar to that described by Rosenblghal.[24]: in Rosen-
bluth et al's case, chaotic field lines, as well as chaotic mag-
netic fields, appear from an initial regular state, with straight
magnetic field lines. In their case, the perturbations grow
exponentially as a result of instabilities, and chaos appears if
resonant regions overlap. This differs from our case, where
resonant conditions are irrelevant, because our transition to

FIG. 7. Ma_pping of a single field line Iy_ing_initially in the=0 chaos is “kinematic,” i.e., induced by the velocity field
plane, shown ira). AII oth.er pa}nels are as in Fig. 6, except that the (which is given, and is represented by, the STF transforma-
final states of the single field line corresponds to(8)XSTF cycles. tions. However, the point here is that the velocity field in

o th oot field [mes followng the STE tranct "Bur case isregular, and nevertheless generates a chaotic
regarding tne geometry oTTield ines toflowing the ransforma magnetic field. Therefore, the transition to chaos is not
tion are not met, but that the field geometry instead becomes in;:

. I trivial.
creasingly complex with time.

that the field is rather intermittent. Indeed, a rough estimation B. Magnetic field correlations

of intermittency can be obtained via the flatness factor If the STF would work as expected, i.e., if the large-scale
A flux were to grow exponentially without substantial contri-
(B%) butions from fluctuations, then the correlation function

(B%? would grow self-similarly[13], e.g.,

whose value needs to be compared with the Gaussian value C(r)=(B(x+r,t)-B(x,t))~e*"(B(x+r,0)-B(x,0)).
of 3. From Figs. &) and §d), it is clear that this factor is (13

much larger than 3, indicating very strong departure fromThis means that the correlation scale would not decrease.

Gaxsrii?ebgﬂsgll:aoréstimation of intermittency, or intermit- However, as we have already pointed out, fluctuatines
tency for different scales, is presented by tﬁe generalize _enerated; an(_j we can ask h@ﬂ) be_haves as a resu I
dimensions. We note firs,t that 2 ) values we obtain '9ure 9a) depicts the correlation function at different time
are definitely not trivial, i.e D®+3. Second they are steps(measured in units of one ST cykléor a magnetic
oo ; ' field line started in the=0 plane. One can clearly see that

i (1)
subs;annally Iests tt.han I(3nd_eet(:],Dé <2).’ gnd rt]heﬁ' do Ot +he correlation scale decreases, and that the grow@{rofis
reach an asymptotic value in the domain in which We Carmieq, v soit_similar. Note that, in view of the dramatic growth of

out the computations. It can be proven that the generalize e magnetic energy, the plot has been drawn on a logarith-

nghe r|1:si|on55 ii%r%as_?h V\:'t? rgro;/r\glrn:%[Zﬂ; :htailct: I\?ali?é')eg? N mic scale, and therefore the negative parts of the correlation
Do(i) r?]S' ¢ be still meelllzr(') :ﬁd tﬁe fnyeap Ore of multifracta functions cannot be depicted. In fact, on a linear scale, the
g MUS Stll S ' su uitl “correlation function can be seen to decrease to zero on a

lity, 3—D g°... [2.0]’ is larger than 1. FlnaIIy_, we n_ote th?‘t the correlation length, and then to fluctuate about zero; this is
flatness factor is larger, and the generalized dimensions ate ctrated in Fig. 9b), in which we show the correlation
smaller, forh=0.1 case than for the cabe=0. We interpret function “tails” o'n a Ii,near scale

this to mean that the curve fér=0.1 is more singular than At any given time, the correlation function can be fit well

the curve corresponding to=0. We might have expected - . . thic Al
that because, at least after the first STF cycle, the line inipy polynomials for lags smaller than the first zero; this al

. , - ) . . lows us to construct a statistically defined correlation length
tially starting from thez=0 plane is mapped simply into a
(slightly distorted double circle, while the line starting in the C(r)

z=0.1 plane is already geometrically complicated after the o=lim| ———
r—0 Ed C/dr

1/2
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In Fig. 9(c), we display the evolution ofi/8)? with time; as 6. Now, since one would expe¢for a finite Reynolds num-
we will discuss below, this quantity is closely related to theben that 5=1/R/2, one can define the effective magnetic
effective magnetic Reynolds numbBy,,. We see that the Reynolds number as

characteristic spatial scale decreases exponentially with time,

2
(118)%2~el58, Rm5<l_) ] (14)

Inspection of Fig. &) also shows that this spatial scale re-
duction is less rapid than the magnetic field growtiich is  This formula isnot valid at the initial stage, wheé=l, i.e.,
also exponential in time, but with a larger growth pafEhis  no scale reduction can occur at the initial stage by definition.
situation is typical for dynamofl]. What is more, if there were no scale reduction during suc-
Formally, we know that the magnetic Reynolds numbercessive STF cycles, E¢L4) would be inappropriate because,
for our problem is infinite(because the nature of the Lun- again,s=I—Ileading to the result that the effective Reynolds
dquist solution presumes zero diffusivityand we further number isR,=1, while in contrastR,— as long as no
know that for the STF problem, one “classically” would not scale reduction takes place. We can therefore apply formula
expect to see spatial scale reductfae., one would classi- (14) only because we do observe scale reduction, i.e., we
cally expect thah=0 in Eq.(1)]. However, as we have just observe thats decreases exponentially as successive STF
seen, spatial scale reduction does occur in our calculationgransformations are appliedt is for this reason that we have
and it is therefore appropriate to consider an effective Reydenoted(l/8)? by Ry, in Figure 9c).]
nolds numberR,,, and to determine its value. In order to  The large-scale magnetic field component can be mea-
define this quantity, we go back to our earlier discussion ofured by averaging the long-range correlation function, thus
small-scale dynamaSecs. | and I, where we noted that the defining(B3); the result is also depicted in Fig(d. We can
magnetic field scale is reduced until it reaches the scale dfee that the large-scale magnetic field energy by and large
the exponentially fastest-growing eigenfunction of the kine-does grow with time, though not monotonically: roughly
matic problem, i.e., the diffusive scalé [11]. Once the speaking, the large-scale component grows only on average,
magnetic field scale has reached this value, this growing sand at a rate distinctly slower than both the rate at which the
lution takes over, so thatis the final characteristic scale of magnetic field spatial scale is reduced, and the rate at which
the magnetic field, i.e., the correlation scale is then of ordethe small-scale component of the magnetic field increases:



4740 VAINSHTEIN, SAGDEEV, ROSNER, AND KIM 53

10000 T T

— — =z _— .
5 106 (a) *—K =5 . O—o t=6 (b)

B A t=4 ] 5 *—x t=5

= XX =3 © A A t=4

% =2 £ 5000 XX t=3

> =1 &

£ 104L 1 B8 (=0 - £

~<6 £ ,\ & »6

%] v %]

‘5 " A 'S 0

g 02 l A E FIG. 9. Correlation properties of the magnetic
A s field; in all cases, the initial line lies in the=0

% “ % —5000 plane (h=0). (a) Correlation functions at differ-

g 0 £ ent time steps. Because of exponential field
S 10% 3

growth, the ordinate is in logarithmic units, and
. ] e I therefore only positive portions of the correlation
00 09 0.4 ¥06 08 1.0 04 06 08 10 12 14 functions can be depicte¢b) Fluctuations of the
“tails” of the correlation function, for different
time steps, shown on a linear ordinate scég.

108 R Magnetic energy amplification at smadsterisk
: ., p 1.30 (g and large(diamond scales, and growth of scale
¥———x B ~R., (d . . :
B — -1 ~R reduction, i.e., decrease of the correlation length
108} o BZ/B;MNRMOJS J 8 (square. The latter quantity is computed by
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equivalent to plotting the evolution of the effec-
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all quantities are plotted vs the effective magnetic
Reynolds number.
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One can similarly consider the dependence of the small- R,
and large-scale magnetic field components, and of the mag- R,—R, L C(r)dr,
netic field spatial scale, on the effective Reynolds number !
Rp; these are shown in Fig(@). From this analysis, we can where C(r) is the correlation function, and the interval
determinen [in Eq. (1)], we find thatn=0.75. R,—R; is taken to be as large as possible; we tRkeo be

An obvious question is to what extent the results just distoughly equal to the value of the lag at which the initial
cussed depend upon initial conditions. In order to answer thisorrelation function has its first zero, and taRe to be the
question, we have repeated the calculations leading to Fig. $argest lag possible in our calculatioridlote that while the
but assuming that the initial magnetic field line is now atdefinition of R, is unambiguous, the definition & is some-
z=h=0.1; the results are shown in Fig. 10. We see oncevhat arbitrary; in our experience, the precise valudRofis
again exponential spatial scale reduction, and exponentidlowever not critical to the following discussionVe then
growth of fluctuations. However, we do see one possiblydefine
significant difference from the earlier calculations: there is
substantial decrease of the large-scale component at the very

beginning i.e., after the first STF cycle. In order to under- |1 is clear from Fig. 11 that the negative portion of the
stand this unexpected result, we have repeated this calculgyreation function at=1, i.e., after the first STF stage, is
tion for the first STF step only, but for an ensemble of 64 certainly less than that of initial stage. In other words, the
initial field lines, and have then computed the correlationzrge-scale component definitely decreases after the first STF
functions for the resulting magnetic field &0 and at the stage, confirming our earlier result for the single field line
t=1 step(i.e., after one STF transformatiprthe results are lying initially at h=0.1[i.e., Fig. 1@c)]. Thus we can con-
shown in Fig. 11. The result far=0 is as expected, since we clude that the behavior seen in Figcpis actually anoma-
know that the total magnetic flux througlsay the x=0  lous (despite the fact that an increase in the large-scale field
plane must be zero initiallyso that the magnetic field has to even after a single STF transformation is “expected” under
change sigh A rough measure of the large-scale magneticthe naive interpretation of the STF processis only a very
field can be obtained by considering the following average ofpecial, “favorite,” field line that behaves as one classically
the correlation function: expects.

(B3y=|Cl.
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Another way to observe the variations of the large-scale
magnetic field components is to construct a Poinsaion
of the magnetic field corresponding to, for example,tked
plane. Figure 12 depicts two such sections after six STF
cycles, for magnetic field lines lying initially in the=0 and
z=0.1 planes. We note first that there are no regions of con-
tinuous intersection, that is, there are no chaotic regions in
the Poincaresense; this is probably because we have con-
structed these sections after only six cycl@¥e recall that,
typically, continuous regions appear only for trajectories that
pass the periodic cell a large number of times, which would
be equivalent to many STF cycles in our castowever, the
Poincaresections shown in Fig. 12 depict the sign of the
field (and therefore may be referred to as “polarized”
mapsg; that is, we distinguished the intersections of the plane
with a magnetic field line by different symbols, depending
on the direction of the field at the intersection point. Now,
under the naive picture of the STF process, one would expect
that most field lines would pierce the=0 plane one way on
the right-hand side of this plane, and the other way on the
left-hand side; however, this is not observed. Instead, what
we observe is fairly good mixing of the two field polarities;
thus these polarized Poincareaps imply that the large-scale

ensemble of 64magnetic lines. Note that the negative portion of magnetic field does not look like what was expected, con-

thet=1 correlation function is smalldin absolute magnitudehan

firming in a qualitative fashion the above quantitative con-

the initial correlation function, implying that the large-scale mag- clusions drawn from an examination of the long-range be-

netic field has actually decreased after this first step.

havior of the correlation functions.
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™ STF. First, only the “favorite” field line behaves as ex-
= o ! ] pected; the unwanted distortion of the other lines is probably
i +, ] inevitable. Second, there are side effects even for this
0.2f *o o % U] “good” field line, as even this field line cannot be stretched-
SR a °”**°‘*+w¢+w+ . & fd“me% ] twisted-folded “ideally.” As a result, the field line becomes
-oor grttt % T gl flotedgey T totally distorted after only a few cycles.
ook o & % B °oF “"*t*ni It is not known if there exists more complicated STF mo-
’ 1 tions than suggested [11] that would give no fluctuations.
_oal o ] Our impression, derived from the study presented here, is
' = that the geometric distortiondeading to rapid growth of
: - ; 1 - — fluctuationg are inevitable for any version of the STF mo-
ol ) o E tion. (We would therefore expect that any STF motion that
Tt o] does lead to “ideal” behavior is most likely structurally un-
02l 38 o 0 H@t ++°§¢+ 3 stable; that is, only slight variations of the STF parameters
x AT 1 would result in dramatic changes in the field line geomgtry.
%i “‘*“**w,pao + 7] As a result, we suggest that the previously held belief that
7021_ o et E the STF process is a prototype for a fast dynamo process,
“r o] with the property thah=0 in Eq. (1), is most likely incor-
—oal 5 ] rect. That is, while our numerical study does not prove that
? , , R n=+0, we can assert that claims that0 cannot be taken at
-15 1.0 -05 0.0 05 1.0 face value, but rather must be demonstrated.
Is the STF process a model for a large-scale dynamo?
FIG. 12. Polarized Poincamaps, or sections, for a single mag- From Figs. 9 and 10, we WOU',d conclude that the answer is
netic field line, after six STF cyclesa) Initial line lies in the  Y€S:" however, these numerical results do not prove the
z=h=0 plane.(b) Initial line lies in thez=h=0.1 plane. Both ~POsSibility of such a dynamo. As for the small-scale dynamo
plots correspond to intersection of the magnetic field line with theProcess, we recall from Sec. V that the magnetic field on
x=0 plane. Circles correspond ®,>0, and plus signs t@®,<O0. small scales grows faster than the rate at which the magnetic
For an “ideal” STF cycle, all the circles would be on the right- Spatial scale is reduced; that is, field amplification is more
hand side of the section plots, and plus signs on the left-hand sid€ffective than scale reduction. As the later process eventually
clearly, the STF process studied here does not yield this expectdeads to field dissipation, we may expect that, for the STF
result. motion, dynamo action wins the battle against diffusion; that
is, we expect that dynamo action will not saturate via diffu-
Returning to Fig. 10, we observe thiah panel(c)] the  sive processes, but more likely will saturate because of non-
large-scale field component does eventually gf@s was linear processes which become important as the small-scale
seen in Fig. &)]; and, similarly, the large-scale portion of field grows, and the Lorentz back reaction takes effect. In
the correlation function isiot negative at the second and any case, it would seem that the STF process does indeed
fourth stage$marked by(+) in panel(c)]. We conclude that lead to a magnetic dynamo.
the large-scale component does in fact grow on average; Finally, an important issue for studies of the sort reported
from the results shown in Fig. 10, we find that the averagen this paper, namely those based on numerical simulations,
exponent is 2~1.387, while the expected exponent due tois the effects of discretization and limited resolution; this
doubling of the field is 2 In21.386.(The remarkable corre- issue has already emerged in our previous discussions when
spondence of these two numbers is most likely a coincifaced with the question of how long the Lundquist solutions
dence, given the likely numerical error&inally, from Fig.  may be followed in order to compute the STF line stretching.

9
r + 4
-0.01 o5 ¥ a0
[ o

%

10(d), we obtainn=0.54. In particular, one may ask whether we could be making a
mistake regarding the importance of the growth of small-
VI. CONCLUSIONS AND DISCUSSION scale fluctuations. Here we only wish to point out that our

procedures insure that our estimates for this growth is con
We have addressed the question of whether the stretclservative, i.e., our resultainderestimatethe fluctuation

twist-fold dynamo process should be considered as a protgrowth rate. We have in fact compared results for line
type for the magnetic dynamo processes and, in particulastretching for varying resolutions, and find that the fluctua-
for “large-scale” dynamos. The first point is that because oftions increase with increasing resolution. This is in fact to be
the amplification of fluctuations, we find that the exponent expected: The accuracy with which the Lundquist solution
[from Eg.(1)] is not small; in factn>0.5, as would be ex- provides the evolution of a given point on a given field line
pected from simple geometrical considerati¢@s]. While  is independent of the resolutigbut just depends upon the
numerical simulations cannot be considered as a proof of thaccuracy of the integrationIn contrast, the rate of line
existence of fluctuations, it is nevertheless clear that it is vergtretching does depend upon resolution because our compu-
difficult to “tune” the simple STF motion suggested by tation of the line length is based on approximating a line by
Moffatt and Proctof11] in such a way that fluctuations do a sequence of joined chords connecting sequential points on
not appear. Indeed, fluctuations seem to be an inevitable by field line; we obtain an underestimate of the line length
product of the STF. Furthermore, as we saw in Secs. |V Abecause the chord joining sequential points is the shortest
and IV B, there are two unwanted effects accompanying th@ossible distance between these points.
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Note added in proofThe evolution of the field linéSec.

4743

further small-scale structure is introduced. Such distortions

IV) has been made in the first-order approximation. As weare similar to those resulting from small changing in the
previously noted 18], the line was assumed to be well re- parameterggiven in Sec. I, and specified in the caption of
solved if, at the last step, the distance between the neighbgrig. 1). It appears interesting to study the effect of changing
points remains “infinitesimal small,” i.e., much less than the parametergprovided, of course, the motion still remains of

characteristic scale. S. Lan{€ornell University has sug-

STF type on magnetic field statistics. We would not expect,

gested a scheme for calculating the field line correct to setowever, a strong dependence on parameters because the
ond order. Preliminary simulations confirm our expectationstatistica| properties are robust, by definition.

that the second-order corrections do not change our main

results. First, they still show that only a few “favorite” field

lines perform the STF, as expected, and most of them behave

differently. Second, after a fein fact, foun STF cycles, the
line becomes chaotic.
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