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This paper presents direct numerical simulations of the stretch-twist-fold~STF! dynamo. For more than two
decades, this dynamo has been viewed as the prototype of the fast dynamo process; and because of its
apparently conceptual simplicity, it was generally not thought to be necessary to investigate its quantitative
properties in detail via numerical simulations. Furthermore, it has been generally assumed that the STF
dynamo is not characterized by small-scale fluctuations, as is usually the case for many other dynamo pro-
cesses. Numerical simulations show, however, that the STF dynamo process is accompanied by the generation
of small-scale fluctuations in the magnetic field. Therefore, it cannot be taken as ana priori given that the STF
dynamo is a large-scale dynamo; however, our results suggest that the STF dynamo does generate large-scale
magnetic fields. In any eventuality, the magnetic fields generated by the STF process do not behave as was
previously expected: As we show, these fields become chaotic, first, in the sense that magnetic field lines
acquire multifractal properties; and, second, because the field itself becomes chaotic@i.e., the~intermittency!
fractal dimensions are no longer trivial#. @S1063-651X~96!08905-2#

PACS number~s!: 05.45.1b, 52.30.2q, 47.52.1j, 47.53.1n

I. INTRODUCTION

Since the stretch-twist-fold~STF! magnetic dynamo
model was introduced by Vainshtein and Zel’dovich@1#, it
has become a paradigm for the ‘‘fast dynamo’’ process@2#.
Conceptually extremely simple, the STF process has ap-
peared to be so intuitively obvious in its functioning that
essentially no efforts have been made to study its detailed
behavior via numerical simulations.~Thus, although, strictly
speaking, the STF process is inherently three dimensional, it
has not been difficulties in solving the equations numerically
that has prevented further progress. Indeed, in the high con-
ductivity limit, when diffusion may be neglected, the kine-
matic dynamo problem is exactly solvable via the Cauchy
solution; see e.g.,@2,3#!. In this paper, we provide numerical
simulations of the STF process, with the quite unexpected
result that the conceptual simplicity of the mechanism turns
out to disguise a remarkable complexity of the actual solu-
tions.

One of the goals of this paper is to study the origins of
this complexity, which appears to be intimately connected
with the generation of small-scale magnetic fluctuations~cf.
@4–7# and the review in@1#!. This growth of fluctuations is
associated with spatial scale reduction of the ambient mag-
netic fields during the course of magnetic field amplification,
down to the diffusive spatial scales. In classical dynamo
theory, this process of scale reduction~a concept borrowed
from turbulence theory! is essential to magnetic field ampli-
fication: only when such scale reduction down to the diffu-
sive scales occurs does the magnetic dynamo~or production
of additional magnetic field lines! function @4–7#. In this
model, the energy of magnetic fields,B2/8p, is concentrated
on very small diffusive scales during the field amplification
process; these small-scale fields may be called ‘‘fluctua-
tions,’’ as opposed to the large-scale componentB0. This
means that the ratiôB2&/^B 0

2& can become large during dy-

namo action; for example, in@8# it is assumed that this ratio
scales as the magnetic Reynolds numberRm to some power
@9#,

^B2&

^B0
2&

;Rm
n . ~1!

If the exponentn is not very small, then this model suggests
that the generation of the large-scale magnetic field compo-
nent might be strongly inhibited for the following reasons:
first, the magnetic energy cannot substantially exceed the
kinetic one; second, the total magnetic energy largely resides
in the fluctuations. As a consequence, there might exist seri-
ous restrictions on astrophysical nonlinear magnetic dyna-
mos, the astrophysical problem being that such dynamos are
to generate large scale fields, instead of fluctuations on dif-
fusive scales.

Now, simple considerations suggest that the exponentn is
of order of unity: For the two-dimensional case,n51 @5#,
and might be even*1 for three dimensions@8#; this conjec-
ture is supported by various calculations, including numeri-
cal simulations@10#. Hence the concern regarding the exist-
ence of astrophysically interesting magnetic dynamos is
hardly settled.

Unfortunately, there are few universally agreed upon re-
sults in this subject area. It is suspected that scale reduction
to the diffusive scales, and the associated fluctuation growth,
is typical behavior; however, one cannot prove that this typi-
cal behavior is in fact universal. Consider the conceptually
simplest case, namely the kinematic regime, for which one
can formulate an eigenvalue problem for the special case of a
steady velocity. If we assume an absence of scale reduction
~and in the presence of magnetic field growth!, then one
would expect that, in this simplified case, the scale of the
unstable eigenfunctions is comparable to that of the velocity
field. However, as shown by Moffatt and Proctor@11#,

PHYSICAL REVIEW E MAY 1996VOLUME 53, NUMBER 5

531063-651X/96/53~5!/4729~16!/$10.00 4729 © 1996 The American Physical Society



smooth eigenfunctions do not exist asRm→`. This suggests
that, for finiteRm , the eigenfunctions are instead character-
ized by the diffusive scaled5l /Rm

1/2 ~l is the characteristic
scale of the velocity field!; and thatd→0 asRm→` @11#.
This in turn suggests that the initially ‘‘smooth,’’~i.e., large-
scale! field adjusts to the eigenfunction with largest growth
rate, i.e., decreases its spatial scale until it reaches the diffu-
sive size scaled.

These issues, which have been addressed for some time in
dynamo literature, were not in fact discussed in the context
of the STF process; indeed, it has been conjectured that the
exponentn in ~1! is small, or even zero, for the STF mecha-
nism @3#, e.g., that there is growth of magnetic flux on large
scales, but not on the small spatial scales of fluctuations.
This circumstance gave rise to the hope that the STF process
might resolve the perceived difficulties with astrophysical
dynamos; see, e.g.,@3,12–14#. This hope is countered by the
objection that the Moffatt-Proctor theorem on eigenfunction
singularity for the limitRm→` does not apply here because
the motion associated with the STF process isnot steady. As
we will show by direct numerical simulation, the STF pro-
cess does lead to small-scale fluctuations in the magnetic
field; we therefore might speculate that because the STF mo-
tion is periodic~a circumstance which leads to Floquet-type
eigenfunctions!, a properly modified version of the Moffatt-
Proctor theorem might nevertheless apply.

In this paper, we shall revisit the STF process, and using
both analytical and numerical tools, will address three ques-
tions.

~i! Is there a large-scale dynamo associated with the STF
process; in particular, is there generation of large-scale mag-
netic flux via the STF process?

~ii ! Do fluctuations appear in the course of STF action?
~iii ! If the answer to the second point is positive, then is

there also a small-scale dynamo process acting during the
STF?~A small-scale dynamo is a process in which the scale
reduction is accompanied by magnetic field amplification,
such that the scale-reduction process is less efficient than the
magnetic field amplification@1#.!

The paper is thus organized as follows. After formulating
the basics in Sec. II, we describe the STF process that gives
rise to fast dynamo action~Sec. III!. The results of the simu-
lations are described in Secs. IV and V; Sec. IV is devoted to
a discussion of the numerical methods used by us to follow
the evolution of magnetic field lines~which might be easily
modified to solve a variety of other fluid-dynamics prob-
lems!, while the spatial correlation of the magnetic field will
be examined in Sec. V. Our summary and conclusions are
provided in Sec. VI.

II. FORMULATION OF THE PROBLEM

We are looking for~exponentially! growing solutions of
the induction equation

]B

]t
5“3@u3B#1h“2B, ~2!

where the velocity fieldu is defined by the equation of mo-
tion

]u

]t
1~u•“ !u52

“p

r
1

1

4pr
@¹3B#3B1n¹2u1F,

~3!

whereF are external forces stirring the conductive medium.
The viscosityn and diffusivityh are small for most astro-

physically interesting cases~i.e., we have both the Reynolds
numberR@1, and the magnetic Reynolds numberRm@1!.
This circumstance makes it very difficult, if not impossible,
to solve Eqs.~2! and~3! in the fully general case. Even in the
kinematic regime~when back reactions of magnetic fields on
the motion are ignored!, for which the velocity field is con-
sidered to be given, there is no general solution of~2!
known. This situation is aggravated by the fact that the
magnetic-field energy grows mostly on diffusive scales, so
that the Lorentz back reaction is already present when the
large-scale magnetic-field component~which we are inter-
ested in from the astrophysical point of view! is really very
weak @10#. In other words, the nonlinear nonkinematic re-
gime comes into play very early on in the generation of
magnetic fields, and therefore the kinematic approach be-
comes invalid. Below, we will follow the ‘‘post-kinematic’’
approach suggested by Childress and Gilbert@3#, which fo-
cuses primary attention on the role of magnetic fluctuations
in modifying the fluid flow, and their impact on the dynamo.

The first issue we address is whether fluctuations can ap-
pear in the STF model. If magnetic field amplification during
the STF process isnotaccompanied by scale reduction in the
magnetic field~i.e., not accompanied by generation of strong
magnetic fluctuations!, then we obtain the results expected
for the past 20 years, i.e., a large-scale dynamo. If, however,
magnetic fluctuations do appear, then there still remains the
question of whether large-scale magnetic fields are gener-
ated. If fluctuationsare present, then the question is whether
the amplification of magnetic fields due to line stretching is
more effective than the scale reduction@point ~iii ! of Sec. I#.

In order to address these issues, we will solve Eq.~2!
numerically, for the ideal caseh50 ~Rm→`!. We first note
that there is an exact solution to this equation, namely the
Cauchy solution

Bi~x,t !5Bj
~0!

]xi
]aj

, ~4a!

B~0!5B„a~x,t !,0…, ~4b!

where a~x,t! is the initial ~t50! position of a Lagrangian
trajectory that arrives at pointx at time t. A conceptually
simple approach to obtain the solution is to rewrite Eq.~4! in
terms of the Lundquist solution~see e.g.,@15,12#!

B~x,t !

B~a!
5

ds

ds~ t50!
, ~5!

whereds is an infinitesimal vector connecting two neighbor-
ing liquid particles. The procedure for computing the mag-
netic field evolution in time is straightforward: Suppose we
are given a flow~ẋ5ux , ẏ5uy , and ż5uz!, and suppose
further that we will examine the evolution of a given mag-
netic field line, whose location is specified at timet50. If we
discretize the field line, i.e., approximate the field line by a
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finite number of short straight line segmentsds joining se-
quential points on the magnetic field line, then the evolution
of the field line is defined by the motion of these line seg-
ments.

Specifically, consider thei th line segment: its ends are
defined at any given time by

dsi5$xi~ai ,t !,xi11~ai11 ,t !%,

whereai and ai11 are the initial~t50! position of thetth
infinitesimal line segment. With the use of actual flow ex-
pressions

~ ẋ5ux ,ẏ5uy ,ż5uz!,

one can now solve for the Lundquist solution~5! by appro-
priate simple substitution for the velocity flow.

III. STF VELOCITY FIELD

We use an analytical form of the STF, suggested by Mof-
fatt and Proctor@11#. The velocity is presented as a combi-
nation of polynomials of lowest possible orders. In order to
make sure that the motion is bounded at infinity, the vector
potential of this velocity is multiplied by the exponential
term exp$2x2/R2%; this insures that the velocity goes to zero
at infinity.

The first step, ‘‘stretch,’’ is described by

Ŝ: u15a1e
2x2/R1

2
„x22xz2/R1

2,y22yz2/R1
2,

22z12~x21y2!z/R1
2
…. ~6!

This velocity stretches all field lines not far from thez50
plane, and~because of the assumed damping exponent, or
requirement that the motion is bounded! leads to the opposite
process on the periphery, namely compression of field lines.
Therefore, we have to restrict ourselves to regions not far
from z50.

Next, we make a figure ‘‘eight’’ from the loop, compress-
ing it along they axis @16#,

T̂1 : u25a2e
2x2/R2

2
2~y21z2!/r2

2
„0,2y12yz2/r 2

2,

z22zy2/r 2
2
…. ~7!

The next step is to twist about thex axis, described by

T̂2 : u35a3e
2x2/R3

2
„0,v~x!z2xz~y21z2!/R3

2,

2v~x!y1xy~y21z2!/R3
2
…, ~8a!

v~x!5x. ~8b!

Now the loop should lie in theXZ plane, and we want to
fold it in the y direction. This can be accomplished by the
motion

F̂: u45a4e
2y2/R4

2
2~x21z2!/r4

2
„2x12~xy21cx3y!/R4

2,

y13cx222~x2y1cx4!/r 4
2,0…. ~9!

We end up with a loop in theYZ plane, centered at some
positive value ofy ~andx5z50!. We have to shift it back,
so that the center is aty50, and turn it about they-axis @17#.

As a final aside regarding this STF flow, we note that
there are 11 distinct parameters which define this flow:a1,
a2, a3, a4, r 2, r 4, R1, R2, R3, R4, andc.

IV. NUMERICAL SIMULATIONS

In this section, we discuss the results obtained by solving
Eqs.~5! numerically, based on the use of the STF flow~6!–
~9!. These simulations suggest that the simple picture of the
STF dynamo applies only to a set of field lines of measure
zero, i.e., that virtually all field lines subjected to the STF
flow experience transformations that lead to field line chaos.
An essential question is whether this result hinges on an
‘‘appropriate’’ choice for the flow parameters which enter
into the definition of the analytical STF flow~6!–~9!, i.e.,
whether—with a more judicious choice of these
parameters—one in fact could recover the simple picture for
the STF dynamo process for almost all field lines. As we will
see~in Sec. IV B!, this question can be answered in the nega-
tive for continuous motion.

A. Mapping of magnetic field lines

In Sec. III, we described the technique used by us to
implement the STF flow numerically, namely by using the
Lundquist solution~5!; in this subsection, we provide some
illustrative examples of the effects of this flow on field line
geometry as these magnetic field lines are deformed by the
flow ~6!–~9!.

The illustrations we focus on all start with the topologi-
cally simplest magnetic field geometry, namely circular
~closed! field lines placed at various locations with respect to
the origin. Two distinct sets of calculations will be displayed.
The first set@caseA# consists of 64365 concentric coplanar
circles~ranging in radiusr from 0 to 1!, where the common
plane is specified parametrically by~z5h, h5const!, and
where we shall letz5h lie in the value range20.5<h<0.5
~or 20.5/p<h<0.5/p!; this gives 65 distinct values ofh.
The second set of calculations@caseB# focuses on a single
~initially circular and planar! field line, whose center lies in
the planesz50 or z50.1.

The difference between these two sets of calculations is
largely in the resolution of the numerical solution~e.g., in the
number of points taken on any given initial closed field line!,
and whence in the duration for which the Lundquist solution
can be followed sensibly without significant loss of geomet-
ric information@18#. In particular, the first set of calculations
entails taking 64 points per initial field line~i.e., an interpoint
distance ofp/64!, while the second set of calculations entails
taking 643 points per initial field line~i.e., an interpoint dis-
tance ofp/643!. Thus we can follow the field line distortion
for far longer durations in the second case than in the first. In
particular, the average distance between adjacent points on a
given field line for caseA becomes comparable to unity after
only two STF cycles; hence, only a single STF cycle can be
sensibly followed in this set of calculations. However, as we
show immediately below, this is sufficient to demonstrate
~both qualitatively and quantitatively! the sensitivity of the
geometric field line distortions on the precise initial location
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of a given ‘‘test field line.’’ In caseB, our resolution crite-
rion allows us to compute the geometric distortion of the
single field line for up to six STF cycles; again, we will
shortly show that even though we now follow only a single
field line, the computation suffices to apply quantitative
analyses to the resulting complex geometric object. In par-
ticular, the Hausdorff dimension of the line is shown to be
greater than 1.

We begin our illustrations with caseA: Fig. 1 depicts the
evolution of three bundles~or tubes! of magnetic field lines
lying in the planez50 as a result of one STF cycle; the
figure shows selected lines, whose radii lie in the vicinity of
r;0.51 ~upper panel!, r;0.2 ~middle panel!, and r;0.9
~lower panel!. While the flux tube withr;0.51 seems to
deform roughly as expected from the STF transformation,
this is not the case for the other two flux tubes: the field lines
with initially smaller radii are simply compressed~see the
explanation below in Sec. IV B!, while the initial field lines
with initially larger radii are highly distorted in an apparently
random manner.

Magnetic flux tubes which lie only slightly out of the
planez50 behave completely differently. In Fig. 2 we show
the evolution of three additional cases, now for fixedr
~50.51!, but varying initial plane. It is evident that in no case
do we obtain a geometric result after one flow cycle which
resembles the canonical STF picture of field line distortion.

In order to illustrate that repeated application of the STF
flow enormously complicates the resulting field line geom-
etry, we have followed the time history of a single field line
~caseB! as well; as already alluded to, the focus on a single
field line affords additional computational power, from
which comes the ability to follow the field line evolution
further in time.

To make our point, let us consider the temporal evolution
of those field lines that most closely conform to expectation
after one STF cycle, i.e., they are ‘‘properly behaved.’’ As
shown in Figs. 3 and 4, although these field lines are rela-
tively rare, they do exist. We suspect that it is thecontinuous
nature of the STF transformation~6!–~9! that leads to this
situation.

FIG. 1. Evolution of a bundle
of magnetic field lines after one
STF cycle ~caseA!. Initial lines
~left-hand panels! are placed in
the vicinity of thez50 plane, with
radiusr50.51 ~a!, r50.2 ~c!, and
r50.9 ~e!. The corresponding fi-
nal field line bundles are shown in
~b!, ~d!, and~f!, respectively. The
parameters for the STF are
a151.3, a253.0, a353.30,
a451.0, r 251.0, r 450.7,R151.0,
R250.3, R350.71, R451.4, and
c51.9.
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However, Fig. 3 also shows that the actual geometrical
distortion of such a ‘‘properly behaved’’ field line after the
initial STF cycle is not perfect; that is, there are small dis-
crepancies between the actual distorted field line and the
‘‘ideal’’ STF, processed field line@cf. Figs. 1~b! and 3~b!#.
The key point that Fig. 3 demonstrates is that it is these small
discrepancies that lead to ultimate field line chaos even for
these ‘‘well-behaved’’ field lines.

A second case~z50.1 at t50! is shown in Fig. 4. It is
evident that even after a single STF cycle, the field line de-
formation is already geometrically complex; as time pro-
ceeds, complexity grows yet greater—there is some resem-
blance to the Lyapunov exponential separation of two
neighboring particles in a chaotic flow.~We will pursue this
aspect further quantitatively in Sec. IV B.!

B. Parameter sensitivity

An obvious and very important question following from
the results just obtained is whether these results are just an
unfortunate consequence of a particular choice of the param-
eters defining the initial field line configuration~i.e., z5h

andr! or of the 11 parameters characterizing the STF flow;
or whether these results are really a generic description for
this type of flow. In other words, could a more judicious
choice of control parameter space avoid these difficulties?
We have in fact explored the full parameter space to some
extent ~for obvious reasons, a high-resolution study of this
11-dimensional space could not be carried out!. In no case
did we find a preponderance of ‘‘well-behaved’’ field lines
after one STF cycle; generally, only a small fraction~of the
order of a few percent! of the initial field lines behaves
‘‘properly.’’

To be more specific, let us consider the actual sequence of
transformations embodied in the STF. We find that virtually
any combination of control parameters leads to a successful
stretchŜ operation~i.e., essentially all field lines are ‘‘well
behaved’’ after theŜ operation!. However, this is not true for
the next twist operation. Consider the transformationT̂1 @Eq.
~7!#: One obtains ‘‘figure eight’’ loops only for field lines
whose initial radiusr is, roughly speaking, greater thanR2;
field lines whose initial radius is comparable to, or smaller
than,R2 would be simply compressed to thex axis, see Fig.

FIG. 2. Same as Fig. 1, but
with fixed initial flux tube radius
~r;0.51! and varying initial
plane:z520.01 ~a!, 0.01 ~c!, and
0.1 ~e!; the final flux tube configu-
ration after a single STF transfor-
mation is shown in~b!, ~d!, and
~f!, respectively.
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1~d!. The next step, ‘‘twisting’’ of the field lines~T̂2! is even
more complicated, because the ‘‘angular velocity’’v is a
function ofx. Thus, for any given time allotted for this stage,
only ‘‘selected’’ loops halves would turn sufficiently so that
the entire loop is twisted 180°; loops of smaller size, and
therefore, with smaller angular velocity, would not have suf-

ficient time to finish the 180° twisting, while larger loops
would be overtwisted, i.e., twist more than 180°.

Thus we are left with only few percent of the field lines
that behave ‘‘properly.’’ We found that very careful param-
eter tuning is required to do the next step, foldingF̂, for
these few ‘‘selected’’ field lines, otherwise they are distorted

FIG. 3. Evolution of a single
field line ~caseB!, lying in the
plane z50. Time is measured in
terms of the number of STF
cycles. ~a! Initial line ~t50!. ~b!
t51. ~c! t52. ~d! t53. ~e! t54. ~f!
t55. ~g! t56.
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and deformed in unpredictable way. This suggests that if a
special choice of control parameters exists that yields a frac-
tion of ‘‘well-behaved’’ field lines, then it must occupy a
small fraction of the phase space volume. Finally, as men-
tioned in Sec. IV A, even selected field lines do not form
perfect double circles.

Thus we arrive at two conclusions. First, the analytical
representation of the STF transformation accomplishes the
geometric field line distortions traditionally associated with
the stretch-twist-fold dynamo only for a few ‘‘selected’’ field
lines; essentially all other field lines are transformed in an
apparently chaotic manner. Second, even these ‘‘selected’’
field lines, which behave ‘‘well’’~or as well as could be!
after one STF cycle, behave ‘‘badly’’~i.e., do not conform to
the traditional STF picture! for subsequent STF cycles.

C. Fractal dimensions of stretched magnetic field lines

The initial geometry of the field lines we have studied has
been kept simple, and thus smooth. The question we now
address is whether successive STF transformations lead to a
geometrically more ‘‘complex’’ field line object.

To begin with, we note that for any finite number of suc-
cessive STF cycles, a given field line must remain smooth,
e.g., its topological dimension remains equal to 1. Thus any
departures from smoothness in this sense can only be re-
garded in an asymptotic sense, as the number of successive
STF cycles goes to infinity. Nevertheless, we are able to ask
whether neighboring points on a given field line exhibit scal-
ing as the number of successive STF cycles increases~but is
still finite!; such emergence of scaling behavior will be re-
garded by us as evidence of the appearance of field line
chaos. In particular, we shall ask whether the curve defined
by a stretched field line has fractal length, and whether this
curve shows evidence of multifractal structure. In order to
attack this problem, we shall use the expression@19#

K S DL

Ds D qL ;S 1

DsD
kq1~12Dq!~q21!

, ~10!

whereDL is the distance between two points~whose initial
separation is given byDs!, and the fractal~or generalized!
dimensions are denoted byDq . Note that by settingq51, we
recover the classical definition of the fractal length dimen-
sion; thus, if ^DL/Ds& shows scaling properties,k can be
found. The Richardson-Mandelbrot dimensionD is then
given by

D511k. ~11!

@The scaling of^(DL/Ds)q&, if any, can be measured for
arbitraryq.# For a regular~smooth! curve,k50 andDq[1;
therefore@using Eq.~11!# D51, and the exponent in~10! is
zero—this is the trivial case. If the STF transformation
would function as was expected~e.g.,@1#!, then the field line
length would double after each cycle, so that after six cycles
the field line length would grow to 26564 times its original
length. Each subsegment of this curve would grow in exactly
the same way, so that ^(DL/Ds)q&564q; hence
^(DL/Ds)q& would not scale withDs, and therefore the ex-
ponent in Eq.~10! is zero: Theexpected~perhaps naive!

result from repeated STF transformations therefore reduces
to the trivial case just discussed.

Now consider how field lines actually behave when sub-
jected to the STF transformation. First, let us look at the
behavior of the dimensionD @i.e., at the caseq51 in Eq.
~10!: Figures 5~b! and 5~d! give an evaluation ofD for cases
we have computed, and we findD.1; therefore we do not
obtain the trivial case. Next, let us ask for the nature of the
magnetic surfaces generated during the STF process, which
may be quantitatively described by their dimension: Accord-
ing to the intersection theorem, the dimension of a magnetic
surface is given byD (2)5D11 ~the Hausdorff dimension
D (H) of the set covered by a magnetic surface therefore co-
incides with D ~2! @19#!. We find that ~in both cases!,
D (H)52.6, whereas the dimension naively expected from the
STF process would be 2.

Another way of looking at this result is to consider the
dimension spectrumDq : Figures 5~a! and 5~c! illustrate scal-
ing for the evolution of a field line which initially lies in the
planesz5h50 andz5h50.1, respectively, for a range of
values ofq. We observe good scaling behavior for about four
decades in both cases; the field lines clearly do not behave in
the ‘‘trivial’’ manner described above. Indeed, evaluation of
the dimension spectrumDq for both cases@Figs. 5~c! and
5~d!# shows strong departure from the ‘‘trivial’’ behavior,
demonstrating a significant departure from unity forDq ~q
.0! in both instances. Remarkably, the two dimension spec-
tra are essentially identical if account is taken of the error
bars. The highest-order dimensions we have calculated sub-
stantially deviate from unity~D450.75!; there is no evidence
that an asymptotic value has been reached~i.e.,D4.Dq for
q.4!. This suggests that the magnetic field becomes stochas-
tic as the STF process proceeds.

The existence of scaling in this field line stretching pro-
cess suggests the following physical scenario: As usual~cf.
@1#!, the stretching and shearing of magnetic fields is accom-
panied by scale reduction. Once the characteristic scale of
the field is smaller than that of the motion, the stretching
becomes effectively self-similar~because the large scale
structure of the motion is no longer relevant!. The fact that
we see multifractal behavior~e.g., the fact that the general-
ized dimensions forq.1 depart significantly from unity!
suggests that the field line stretching is not homogeneous,
i.e., that the Lyapunov exponent is different in different
places.

D. Details of magnetic field structure

To get a better idea of what the magnetic field looks like
as it evolves subject to the STF flow, we show all three
components of its components in theXY plane afteroneSTF
cycle ~i.e., caseA; Fig. 6!. Several important results emerge
immediately. First, according to the ‘‘standard’’ STF pro-
cess, the vertical (Bz) field component should remain zero;
however, it clearly does not vanish, and instead shows fairly
complex geometric structure@Fig. 6~b!#. Similarly, the ex-
pectations for theBz andBy components is that they essen-
tially retain the same geometric structure as they had att50;
in contrast, Figures 6~c!–6~f! show that while the average
geometric structure is indeed retained, the detailed spatial
behavior of these two field components is much more com-
plex: There are ‘‘unwanted’’ enclaves of opposite polarities
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everywhere~where ‘‘opposite’’ means opposite to previous
expectations!, and the neutral line~which corresponds to the
curve separating opposite polarities! is geometrically very
complicated. If one looks at the results of the caseB calcu-

lations~for which we obtain the magnetic field portrait after
six STF cycles!, all evidence of the original geometric field
structure is lost: Figure 7 presents all three components of
the field~as in Fig. 6! for an initial field line lying in thez50

FIG. 4. Same as Fig. 4, but the
initial line lies in the planez50.1.0896054b
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plane; it is evident that the field is extremely complicated,
and does not retain any of the geometric simplicity—even in
the mean—expected from the STF process.

V. CORRELATION PROPERTIES OF THE FIELD:
IS THERE A DYNAMO?

The next step is to examine the detailed correlation prop-
erties of the stretched magnetic field: The standard STF pro-
cess is thought to lead to amplification of the large-scale field
components only, with essentially no fluctuations. Is this in
fact correct for the STF process we are studying here? From
Sec. IV, we have seen that the answer~at least on the quali-
tative level! is no: Fluctuations are seen to grow rapidly in
our calculations, so that the correlation length ought to de-
crease dramatically. In order to study this process quantita-
tively, we will investigate the correlation properties of a
single field line for two cases~e.g., when the initial field line
is at z50 and atz50.1!. As an aside, we note that several
aspects of the correlation function have a direct physical in-
terpretation: First, the zero-lag correlation function is just the
average magnetic energy^B2&; second, the correlation length
is a measure of the typical magnetic field line scale; third, the

long-range portion of the correlation function is directly rel-
evant to the study of the large-scale magnetic dynamo.

A. Intermittency fractals

We first ask if the fluctuations are chaotic. We calculate
correlations of magnitudes, and make use of a formula link-
ing them to fractal dimensions~see@20#!,

^@B~x1r !2B~x!2#q/4&;r ~32Dq/2
~ i ! !~q/221!22~32Dq

~ i !!~q21!;
~12!

here the generalized dimensionsD q
( i ) are based on the mea-

sure

m~Ci !5
*CiuBudx

*VuBudx
,

where the total volumeV is divided exhaustively into dis-
joint subsetsCi . Physically, these dimensions test for the
presence of intermittency. Figure 8 presents scaling proper-
ties for the quantity on the left-hand side of~12!. The scaling
@Figs. 8~a! and~c!# does not have as large a range of spatial
scales as the length-of-line scaling shown in Fig. 5~e.g., only
two and a half decades!, but the error bars are substantially
smaller than for this previous case. Our results clearly show

FIG. 5. Multifractal dimensions of magnetic field line length.~a!
Scaling for an initial field line lying in thez5h50 plane.~b! Cor-
responding dimension spectrumDq . Panels~c! and~d! are the same
as ~a! and ~b!, respectively, but the initial field line lies in the
z5h50.1 plane. For comparison, we have superimposed general-
ized dimensions for theh50 case@from ~b!# on ~d! @using the same
symbol as in~b!#; we observe that the two dimension spectra are
almost identical.

FIG. 6. Mapping of the magnetic field into theXY plane, fol-
lowing one STF cycle; the light~dark! greyscale corresponds to
negative~positive! values.~a! Initial field lines are shown as con-
centric circles, with radii from 0 to 1, lying in 65 planes between
z520.5 andz50.5.~b! Projection of theBz component into theXY
plane.~c! Projection of the initialBx component.~d! Projection of
Bx after one STF cycle.~e! Projection of the initialBy component.
~f! Projection ofBy after one STF cycle. A comparison of the initial
~t50! projections with thet51 projections shows that, contrary to
naive expectations, the relatively simple geometry of the initial state
is not preserved when the STF transformation is applied.
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that the field is rather intermittent. Indeed, a rough estimation
of intermittency can be obtained via the flatness factor

^B4&

^B2&2
,

whose value needs to be compared with the Gaussian value
of 3. From Figs. 8~b! and 8~d!, it is clear that this factor is
much larger than 3, indicating very strong departure from
Gaussian behavior.

A more subtle estimation of intermittency, or intermit-
tency for different scales, is presented by the generalized
dimensions. We note first that theD q

( i ) values we obtain
are definitely not trivial, i.e.,D q

( i )Þ3. Second, they are
substantially less than 3~indeed,D 4

( i ),2!, and they do not
reach an asymptotic value in the domain in which we carried
out the computations. It can be proven that the generalized
dimensions decrease with growingq @21#; that is seen in
both Figs. 5 and 8. Therefore, the asymptotic value ofD q

( i ),
D q→`

( i ) must be still smaller; and the measure of multifracta-
lity, 32D q→`

( i ) @20#, is larger than 1. Finally, we note that the
flatness factor is larger, and the generalized dimensions are
smaller, forh50.1 case than for the caseh50. We interpret
this to mean that the curve forh50.1 is more singular than
the curve corresponding toh50. We might have expected
that because, at least after the first STF cycle, the line ini-
tially starting from thez50 plane is mapped simply into a
~slightly distorted! double circle, while the line starting in the
z50.1 plane is already geometrically complicated after the

first cycle. Summarizing: we see that we obtain multifractal
structure both in the length of magnetic line lines~Fig. 5!
and in the field intermittency~Fig. 8!.

We have already seen in Sec. IV that the evolved mag-
netic field lines are chaotic. It is well known that the equa-
tions defining a field line are equivalent to those describing a
trajectory of a dynamical system, and calculations of such
trajectories have shown that they become chaotic@22,23#.
These calculations typically show that the Lyapunov expo-
nent is positive, and therefore trajectories are chaotic for
these flows@22,23#. In addition, we have just shown above
that the magnetic field is itself chaotic: this would not nec-
essarily be the case for chaotic trajectories. Indeed, Lagrang-
ian chaos may appear in the case of a regular Eulerian field.
Another difference from the previous calculations is that we
see atransition to chaos. That is, both field lines and the
magnetic field are regular at the beginning~t50!, but after
~only! six STF cycles both become chaotic. Our case is quite
similar to that described by Rosenbluthet al. @24#: in Rosen-
bluthet al.’s case, chaotic field lines, as well as chaotic mag-
netic fields, appear from an initial regular state, with straight
magnetic field lines. In their case, the perturbations grow
exponentially as a result of instabilities, and chaos appears if
resonant regions overlap. This differs from our case, where
resonant conditions are irrelevant, because our transition to
chaos is ‘‘kinematic,’’ i.e., induced by the velocity field
~which is given, and is represented by, the STF transforma-
tions!. However, the point here is that the velocity field in
our case isregular, and nevertheless generates a chaotic
magnetic field. Therefore, the transition to chaos is not
trivial.

B. Magnetic field correlations

If the STF would work as expected, i.e., if the large-scale
flux were to grow exponentially without substantial contri-
butions from fluctuations, then the correlation function
would grow self-similarly@13#, e.g.,

C~r ![^B~x1r ,t !•B~x,t !&;e2gt^B~x1r ,0!•B~x,0!&.
~13!

This means that the correlation scale would not decrease.
However, as we have already pointed out, fluctuationsare

generated; and we can ask howC~r ! behaves as a result.
Figure 9~a! depicts the correlation function at different time
steps~measured in units of one STF cycle!, for a magnetic
field line started in thez50 plane. One can clearly see that
the correlation scale decreases, and that the growth ofC~r ! is
not self-similar. Note that, in view of the dramatic growth of
the magnetic energy, the plot has been drawn on a logarith-
mic scale, and therefore the negative parts of the correlation
functions cannot be depicted. In fact, on a linear scale, the
correlation function can be seen to decrease to zero on a
correlation length, and then to fluctuate about zero; this is
illustrated in Fig. 9~b!, in which we show the correlation
function ‘‘tails’’ on a linear scale.

At any given time, the correlation function can be fit well
by polynomials for lags smaller than the first zero; this al-
lows us to construct a statistically defined correlation length

d[ lim
r→0

U C~r !
1
2d

2C/dr2U
1/2

.

FIG. 7. Mapping of a single field line lying initially in thez50
plane, shown in~a!. All other panels are as in Fig. 6, except that the
final states of the single field line corresponds to six~6! STF cycles.
This figure also demonstrates the point that the naive expectations
regarding the geometry of field lines following the STF transforma-
tion are not met, but that the field geometry instead becomes in-
creasingly complex with time.
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In Fig. 9~c!, we display the evolution of~l /d!2 with time; as
we will discuss below, this quantity is closely related to the
effective magnetic Reynolds numberRm . We see that the
characteristic spatial scale decreases exponentially with time,

~ l /d!2;e1.58t.

Inspection of Fig. 9~c! also shows that this spatial scale re-
duction is less rapid than the magnetic field growth~which is
also exponential in time, but with a larger growth rate!. This
situation is typical for dynamos@1#.

Formally, we know that the magnetic Reynolds number
for our problem is infinite~because the nature of the Lun-
dquist solution presumes zero diffusivity!; and we further
know that for the STF problem, one ‘‘classically’’ would not
expect to see spatial scale reduction@i.e., one would classi-
cally expect thatn50 in Eq. ~1!#. However, as we have just
seen, spatial scale reduction does occur in our calculations,
and it is therefore appropriate to consider an effective Rey-
nolds numberRm , and to determine its value. In order to
define this quantity, we go back to our earlier discussion of
small-scale dynamos~Secs. I and II!, where we noted that the
magnetic field scale is reduced until it reaches the scale of
the exponentially fastest-growing eigenfunction of the kine-
matic problem, i.e., the diffusive scaled @11#. Once the
magnetic field scale has reached this value, this growing so-
lution takes over, so thatd is the final characteristic scale of
the magnetic field, i.e., the correlation scale is then of order

d. Now, since one would expect~for a finite Reynolds num-
ber! that d5l /Rm

1/2, one can define the effective magnetic
Reynolds number as

Rm[S ld D 2. ~14!

This formula isnot valid at the initial stage, whend5l , i.e.,
no scale reduction can occur at the initial stage by definition.
What is more, if there were no scale reduction during suc-
cessive STF cycles, Eq.~14! would be inappropriate because,
again,d5l—leading to the result that the effective Reynolds
number isRm51, while in contrastRm→` as long as no
scale reduction takes place. We can therefore apply formula
~14! only because we do observe scale reduction, i.e., we
observe thatd decreases exponentially as successive STF
transformations are applied.@It is for this reason that we have
denoted~l /d!2 by Rm in Figure 9~c!.#

The large-scale magnetic field component can be mea-
sured by averaging the long-range correlation function, thus
defining^B0

2&; the result is also depicted in Fig. 9~c!. We can
see that the large-scale magnetic field energy by and large
does grow with time, though not monotonically: roughly
speaking, the large-scale component grows only on average,
and at a rate distinctly slower than both the rate at which the
magnetic field spatial scale is reduced, and the rate at which
the small-scale component of the magnetic field increases:

FIG. 8. Intermittency fractals, for two differ-
ent initial locations of a field line.~a! Scaling
after six STF cycles, forh50. ~b! Dimension
spectrum, forh50. Panels~c! and ~d! repeat~a!
and~b!, for the caseh50.1. The dimension spec-
tra for the two cases are rather similar@which can
be seen directly in~d!, in which the dimension
spectrum from~b! is superimposed on theh50.1
spectrum#; there is some slight evidence that the
generalized dimensions for theh50.1 case are
smaller, implying that this case is somewhat more
singular.
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One can similarly consider the dependence of the small-
and large-scale magnetic field components, and of the mag-
netic field spatial scale, on the effective Reynolds number
Rm ; these are shown in Fig. 9~d!. From this analysis, we can
determinen @in Eq. ~1!#, we find thatn50.75.

An obvious question is to what extent the results just dis-
cussed depend upon initial conditions. In order to answer this
question, we have repeated the calculations leading to Fig. 9,
but assuming that the initial magnetic field line is now at
z5h50.1; the results are shown in Fig. 10. We see once
again exponential spatial scale reduction, and exponential
growth of fluctuations. However, we do see one possibly
significant difference from the earlier calculations: there is
substantial decrease of the large-scale component at the very
beginning i.e., after the first STF cycle. In order to under-
stand this unexpected result, we have repeated this calcula-
tion for the first STF step only, but for an ensemble of 642

initial field lines, and have then computed the correlation
functions for the resulting magnetic field att50 and at the
t51 step~i.e., after one STF transformation!; the results are
shown in Fig. 11. The result fort50 is as expected, since we
know that the total magnetic flux through~say! the x50
plane must be zero initially~so that the magnetic field has to
change sign!. A rough measure of the large-scale magnetic
field can be obtained by considering the following average of
the correlation function:

C̄[
1

R22R1
E
R1

R2
C~r !dr,

where C(r ) is the correlation function, and the interval
R22R1 is taken to be as large as possible; we takeR1 to be
roughly equal to the value of the lag at which the initial
correlation function has its first zero, and takeR2 to be the
largest lag possible in our calculations.~Note that while the
definition ofR2 is unambiguous, the definition ofR1 is some-
what arbitrary; in our experience, the precise value ofR1 is
however not critical to the following discussion.! We then
define

^B0
2&[uC̄u.

It is clear from Fig. 11 that the negative portion of the
correlation function att51, i.e., after the first STF stage, is
certainly less than that of initial stage. In other words, the
large-scale component definitely decreases after the first STF
stage, confirming our earlier result for the single field line
lying initially at h50.1 @i.e., Fig. 10~c!#. Thus we can con-
clude that the behavior seen in Fig. 9~c! is actually anoma-
lous ~despite the fact that an increase in the large-scale field
even after a single STF transformation is ‘‘expected’’ under
the naive interpretation of the STF process!: it is only a very
special, ‘‘favorite,’’ field line that behaves as one classically
expects.

FIG. 9. Correlation properties of the magnetic
field; in all cases, the initial line lies in thez50
plane ~h50!. ~a! Correlation functions at differ-
ent time steps. Because of exponential field
growth, the ordinate is in logarithmic units, and
therefore only positive portions of the correlation
functions can be depicted.~b! Fluctuations of the
‘‘tails’’ of the correlation function, for different
time steps, shown on a linear ordinate scale.~c!
Magnetic energy amplification at small~asterisk!
and large~diamond! scales, and growth of scale
reduction, i.e., decrease of the correlation length
d ~square!. The latter quantity is computed by
plotting 1/d2; as discussed in the text, this is
equivalent to plotting the evolution of the effec-
tive Reynolds numberRm ~;1/d2!. ~d! As ~c!, but
all quantities are plotted vs the effective magnetic
Reynolds number.
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Another way to observe the variations of the large-scale
magnetic field components is to construct a Poincare´ section
of the magnetic field corresponding to, for example, thex50
plane. Figure 12 depicts two such sections after six STF
cycles, for magnetic field lines lying initially in thez50 and
z50.1 planes. We note first that there are no regions of con-
tinuous intersection, that is, there are no chaotic regions in
the Poincare´ sense; this is probably because we have con-
structed these sections after only six cycles.~We recall that,
typically, continuous regions appear only for trajectories that
pass the periodic cell a large number of times, which would
be equivalent to many STF cycles in our case.! However, the
Poincare´ sections shown in Fig. 12 depict the sign of the
field ~and therefore may be referred to as ‘‘polarized’’
maps!; that is, we distinguished the intersections of the plane
with a magnetic field line by different symbols, depending
on the direction of the field at the intersection point. Now,
under the naive picture of the STF process, one would expect
that most field lines would pierce thex50 plane one way on
the right-hand side of this plane, and the other way on the
left-hand side; however, this is not observed. Instead, what
we observe is fairly good mixing of the two field polarities;
thus these polarized Poincare´ maps imply that the large-scale
magnetic field does not look like what was expected, con-
firming in a qualitative fashion the above quantitative con-
clusions drawn from an examination of the long-range be-
havior of the correlation functions.

FIG. 10. Same as Fig. 9, except the initial line
lies in thez50.1 plane~h50.1!.

FIG. 11. Correlation functions for the initial state att50 ~dot-
dashed curve! and after one STF cycle~diamonds!, computed for an
ensemble of 642 magnetic lines. Note that the negative portion of
the t51 correlation function is smaller~in absolute magnitude! than
the initial correlation function, implying that the large-scale mag-
netic field has actually decreased after this first step.
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Returning to Fig. 10, we observe that@in panel ~c!# the
large-scale field component does eventually grow@as was
seen in Fig. 9~c!#; and, similarly, the large-scale portion of
the correlation function isnot negative at the second and
fourth stages@marked by~1! in panel~c!#. We conclude that
the large-scale component does in fact grow on average;
from the results shown in Fig. 10, we find that the average
exponent is 2g;1.387, while the expected exponent due to
doubling of the field is 2 ln251.386.~The remarkable corre-
spondence of these two numbers is most likely a coinci-
dence, given the likely numerical errors.! Finally, from Fig.
10~d!, we obtainn50.54.

VI. CONCLUSIONS AND DISCUSSION

We have addressed the question of whether the stretch-
twist-fold dynamo process should be considered as a proto-
type for the magnetic dynamo processes and, in particular,
for ‘‘large-scale’’ dynamos. The first point is that because of
the amplification of fluctuations, we find that the exponentn
@from Eq. ~1!# is not small; in factn.0.5, as would be ex-
pected from simple geometrical considerations@25#. While
numerical simulations cannot be considered as a proof of the
existence of fluctuations, it is nevertheless clear that it is very
difficult to ‘‘tune’’ the simple STF motion suggested by
Moffatt and Proctor@11# in such a way that fluctuations do
not appear. Indeed, fluctuations seem to be an inevitable by-
product of the STF. Furthermore, as we saw in Secs. IV A
and IV B, there are two unwanted effects accompanying the

STF. First, only the ‘‘favorite’’ field line behaves as ex-
pected; the unwanted distortion of the other lines is probably
inevitable. Second, there are side effects even for this
‘‘good’’ field line, as even this field line cannot be stretched-
twisted-folded ‘‘ideally.’’ As a result, the field line becomes
totally distorted after only a few cycles.

It is not known if there exists more complicated STF mo-
tions than suggested in@11# that would give no fluctuations.
Our impression, derived from the study presented here, is
that the geometric distortions~leading to rapid growth of
fluctuations! are inevitable for any version of the STF mo-
tion. ~We would therefore expect that any STF motion that
does lead to ‘‘ideal’’ behavior is most likely structurally un-
stable; that is, only slight variations of the STF parameters
would result in dramatic changes in the field line geometry.!
As a result, we suggest that the previously held belief that
the STF process is a prototype for a fast dynamo process,
with the property thatn50 in Eq. ~1!, is most likely incor-
rect. That is, while our numerical study does not prove that
nÞ0, we can assert that claims thatn50 cannot be taken at
face value, but rather must be demonstrated.

Is the STF process a model for a large-scale dynamo?
From Figs. 9 and 10, we would conclude that the answer is
‘‘yes;’’ however, these numerical results do not prove the
possibility of such a dynamo. As for the small-scale dynamo
process, we recall from Sec. V that the magnetic field on
small scales grows faster than the rate at which the magnetic
spatial scale is reduced; that is, field amplification is more
effective than scale reduction. As the later process eventually
leads to field dissipation, we may expect that, for the STF
motion, dynamo action wins the battle against diffusion; that
is, we expect that dynamo action will not saturate via diffu-
sive processes, but more likely will saturate because of non-
linear processes which become important as the small-scale
field grows, and the Lorentz back reaction takes effect. In
any case, it would seem that the STF process does indeed
lead to a magnetic dynamo.

Finally, an important issue for studies of the sort reported
in this paper, namely those based on numerical simulations,
is the effects of discretization and limited resolution; this
issue has already emerged in our previous discussions when
faced with the question of how long the Lundquist solutions
may be followed in order to compute the STF line stretching.
In particular, one may ask whether we could be making a
mistake regarding the importance of the growth of small-
scale fluctuations. Here we only wish to point out that our
procedures insure that our estimates for this growth is con-
servative, i.e., our resultsunderestimatethe fluctuation
growth rate. We have in fact compared results for line
stretching for varying resolutions, and find that the fluctua-
tions increase with increasing resolution. This is in fact to be
expected: The accuracy with which the Lundquist solution
provides the evolution of a given point on a given field line
is independent of the resolution~but just depends upon the
accuracy of the integration!. In contrast, the rate of line
stretching does depend upon resolution because our compu-
tation of the line length is based on approximating a line by
a sequence of joined chords connecting sequential points on
a field line; we obtain an underestimate of the line length
because the chord joining sequential points is the shortest
possible distance between these points.

FIG. 12. Polarized Poincare´ maps, or sections, for a single mag-
netic field line, after six STF cycles.~a! Initial line lies in the
z5h50 plane.~b! Initial line lies in the z5h50.1 plane. Both
plots correspond to intersection of the magnetic field line with the
x50 plane. Circles correspond toBx.0, and plus signs toBx,0.
For an ‘‘ideal’’ STF cycle, all the circles would be on the right-
hand side of the section plots, and plus signs on the left-hand side;
clearly, the STF process studied here does not yield this expected
result.
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Note added in proof.The evolution of the field line~Sec.
IV ! has been made in the first-order approximation. As we
previously noted@18#, the line was assumed to be well re-
solved if, at the last step, the distance between the neighbor
points remains ‘‘infinitesimal small,’’ i.e., much less than the
characteristic scale. S. Lantz~Cornell University! has sug-
gested a scheme for calculating the field line correct to sec-
ond order. Preliminary simulations confirm our expectation
that the second-order corrections do not change our main
results. First, they still show that only a few ‘‘favorite’’ field
lines perform the STF, as expected, and most of them behave
differently. Second, after a few~in fact, four! STF cycles, the
line becomes chaotic.

Convergence was tested with assistance from Lantz.
Comparing the two approximations, one finds a slight sys-
tematic deviation for these two cases; that is, there are small
~;1% in average! large-scale geometric distortions, but no

further small-scale structure is introduced. Such distortions
are similar to those resulting from small changing in the
parameters~given in Sec. III, and specified in the caption of
Fig. 1!. It appears interesting to study the effect of changing
parameters~provided, of course, the motion still remains of
STF type! on magnetic field statistics. We would not expect,
however, a strong dependence on parameters because the
statistical properties are robust, by definition.

ACKNOWLEDGMENTS

We thank A. Malagoli, who suggested programs to calcu-
late the correlation functions, and assisted us with magnetic
field line visualization. We also are grateful to N. Lebovitz,
K. R. Sreenivasan, S. Childress, K. H. Moffatt, and E. N.
Parker for their interest in this work and for discussions.

@1# S. I. Vainshtein and Ya. B. Zel’dovich, Usp. Fiz. Nauk106,
431 ~1972! @Sov. Phys. Usp.15, 159 ~1972!#; L. D. Landau
and E. M. Lifshitz, Electrodynamics of Continuous Media,
~Pergamon, New York, 1984!, Sec. 74.

@2# S. Childress and A. D. Gilbert,Stretch, Twist and Fold: Fast
Dynamo~Springer-Verlag, Berlin, 1995!.

@3# See, e.g., B. J. Bayly, Phys. Rev. Lett.57, 2800~1986!; A. D.
Gilbert and S. Childress,ibid. 65, 2133~1990!.

@4# E. N. Parker, Astrophys. J.122, 293 ~1955!.
@5# Ya. B. Zel’dovich, Zh. Eksp. Teor. Fiz.31, 154 ~1956! @Sov.

Phys. JETP4, 460 ~1957!#.
@6# H. K. Moffatt, J. Fluid Mech.11, 625 ~1961!.
@7# R. H. Kraichnan and S. Nagarajan, Phys. Fluids10, 859

~1967!.
@8# S. I. Vainshtein and R. Rosner, Astrophys. J.376, 199 ~1991!.
@9# The effective Reynolds number Re5ul/n and effective mag-

netic Reynolds numberRm5ul/h are crucial control param-
eters in this problem, and are defined by the rms flow velocity
u, the typical velocity scale lengthl , viscosityn, and the mag-
netic diffusivity h.

@10# F. Cattaneo and S. I. Vainshtein, Astrophys. J.376, L21
~1991!; R. M. Kulsrud and S. W. Anderson,ibid. 396, 606
~1992!; L. Tao, F. Cattaneo, and S. I. Vainshtein, inSolar and
Planetary Dynamos, edited by M. R. E. Proctor, P. C. Mat-
thews, and A. M. Rucklidge~Cambridge University Press,
Cambridge, 1993!; S. I. Vainshtein, L. Tao, F. Cattaneo, and
R. Rosner,ibid; C. A. Jones and D. J. Galloway,ibid; A. V.
Gruzinov and P. H. Diamond, Phys. Rev. Lett.72, 1651
~1994!.

@11# H. K. Moffatt and M. R. E. Proctor, J. Fluid Mech.154, 493
~1985!.

@12# S. I. Vainshtein, A. M. Bykov, and I. N. Toptygin,Turbulence,
Current Sheets and Shocks and Cosmic Plasma~Gordon and
Breach, New York, 1993!.

@13# S. I. Vainshtein and F. Cattaneo, Astrophys. J.393, 165
~1992!.

@14# A. D. Gilbert, N. F. Otani, and S. Childress, inSolar and
Planetary Dynamos~Ref. @10#!.

@15# H. K. Moffatt,Magnetic Field Generation in Electrically Con-

ducting Fluids ~Cambridge University Press, Cambridge,
1978!.

@16# We change the order suggested in@11#, making an ‘‘eight’’
beforetwisting the field, because otherwise this compression,
being in the same plane as the loop, results in unexpected~and
unwanted! strong distortion of the loop shape. Compression
~7! proceeds in a different plane. Another feature is that the
compression should act only at relative small values ofx, and
therefore~in order to avoid distortion of the shape! we intro-
duced another parameter in the exponent so that the damping is
anisotropic.

@17# The cx2 ‘‘ingredient’’ pulls the loop out of they50 plane.
However, there are unwanted side effects, discussed in more
detail in Sec. IV B. The entire cycle works more effectively if
the coefficientc is small, and if,beforethis fold stage, the loop
is slightly shifted as a whole along they axis; this preliminary
motion accomplishes the job. We do not follow the next step
suggested in@11#, that is, to sum all the velocities into one
velocity field ~so that all the steps are carried out simulta-
neously!. There are two reasons for this. First, the operatorsŜ,
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be characterized by the diffusive scaled; that is, the fluctua-
tions would appeara priori. Indeed, preliminary simulations
with this steady motion show that strong fluctuations do ap-
pear.

@18# We note here that in either set of calculations, our resolution
criterion is that the distance between two neighboring points
on a given field line must remain much smaller than the char-
acteristic scale of the curve or, equivalently, much smaller than
the characteristic scale of the imposed STF motion, which is
taken to be unity.
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